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The problem of integrating Kirchhoff's differential equations [1] when they allow of a linear invariant relation with respect to 
the main variables - the components of the angular momentum of a gyrostat and the unit vector of the axis of symmetry of the 
force field, is considered. The initial system of equations is reduced to a second-order system using first integrals of the equations. 
Under certain conditions, imposed on the parameters characterizing the geometry of the gyrostat masses and the potential and 
gyroscopic forces, the integrating factor of the reduced equations is obtained. The solution of Kirchhoff's equations obtained 
contains four arbitrary constants and is determined for more general assumptions compared with existing solutions [2-4]. �9 2006 
Elsevier Ltd. All rights reserved. 

In the dynamics of a rigid body with a fixed point, it is of considerable interest to investigate not only 
the classical problem of the motion of a heavy rigid body [5, 6], but also various generalizations of it, 
particularly the problem of the motion of a gyrostat acted upon by potential and gyroscopic forces and 
the problem of the motion of a heavy rigid body in an ideal incompressible fluid [1-4, 8, 9]. This is due 
to the fact that these two problems are mathematically equivalent, since they are described by Kirchhoff- 
class differential equations [1, 7]. In view of this fact, the previously established cases of the integrability 
of the equations of motion of a solid in a fluid (see the reviews in [5, 6] and also [3, 4, 9, 10]) can be 
interpreted as solutions of the equations of motion of a gyrostat acted upon by potential and gyroscopic 
forces [7]. Since the inverse assertion also holds, any new solution of the equations of motion of a gyrostat 
[7] is also a new solution of Kirchhoff's equations. 

In the general case, the non-integrability of the Euler-Poisson equations was proved in [11] and the 
non-integrability of the Kirchhoff-Poisson equations was proved in [8]. The problem of constructing 
new particular solutions for these equations is therefore a pressing problem [6]. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider the differential equations of the motion of a gyrostat with a fixed point, in a force field, which 
is the superposition of Newtonian, electric and magnetic fields, in the formulation proposed previously 
in [7] 

s = ( x + k ) •  (1.1) 

v = v •  (1.2) 

where x = (xb x2, x3) is the angular momentum of the gyrostat v = (v1, v2, v3) is the unit vector of the 
axis of symmetry of the force fields, ~. = (~1, ~ ,  ~.3) is the gyrostatic moment, characterizing the motion 
of the carrier bodies, s = (sl, s2, s3) is a vector codirectional with the vector of the generalized centre 
of mass, a = (aij) is the gyration tensor, constructed at a fixed point, B = (Bij) is a constant symmetrical 
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third-order matrix, defining the gyroscopic forces, and C = (C#)  is a constant symmetrical third-order 
matrix, characterizing the potential forces. 

Equations (1.1) and (1.2) have first integrals 

x . a x - 2 ( s . v ) + ( C v . v )  = 2E, v . (x+~ , ) - (Bv .v ) /2  = k, v . v  = 1 (1.3) 

Here E and k are arbitrary constants. 
We will formulate the problem of determining the conditions for the existence in system (1.1), (1, 2) 

of a single invariant relation 

x I - ( g o + g l V l  +g2v2  +g3V3) = 0 (1.4) 

where gi (i = O, 1, 2, 3) are constants to be determined. 
For the problem of the motion of a body in a fluid the conditions for the existence of invariant relation 

(1.4) were obtained in [4], but the integration of the Kirchhoff-Poisson equations was only carried out 
in special cases [2, 3], where the version k = 0, s = 0 was investigated in [2] and the version k = 0 was 
investigated in [3]. For the classical problem of the motion of a heavy rigid body, the equations of which 
follow from system (1.1), (1.2) with ~ = 0, B = 0 and C = 0, the analogue of relation (1.4), namely, 
Xl = 0, was investigated by Hess in [12]. A geometrical interpretation of Hess' solution was given by 
Kovalev [13]. Sretenskii extended this solution [14] to the case when k ~ 0, B = 0, C = 0. 

We will differentiate relation (1.4) by virtue of the scalar equations which follow from system (1.1), 
(1.2), and we will require that the equality obtained, after substituting relation (1.4) into it, should be 
an identity for any values of the variables x2, x3, vl, v2, v3. We then obtain the following conditions, 
imposed on the parameters of the problem and the parameter gl (i = 0, 1, 2, 3) 

al2 = a23 = 0, a22 = a33, k2 = 0, a13go-a22~,3 = 0, g2 = BI2 

a13gl-a22g3+a22B13 = 0, al3g2+a22B23 = 0 

al3g3 + a22g I + a22B33 = 0, a22gl - a l 3 g 3  + a22B22 = 0 

s 2 = go(a13B23+allg2),  s3 = g o ( a l l g 3 - a 1 3 g l - a 1 3 B 2 2 )  (1.5) 

Ci2+gl (a13B23+al lg2 )  = 0, C 1 3 + g | ( a l l g 3 - a 1 3 g l - a 1 3 B 2 2 )  = 0 

C 2 3 + g 2 ( a l l g 3 - a 1 3 g l - a 1 3 B 2 2 )  = O, C23+g3(a13B23+allg2)  = 0 

2 2 
C 2 2 -  C33 = a l l ( g 3 - g 2 ) - a l 3 ( g l g 3  + g3B22 + g2B23) 

We will consider the version when a13 = 0. Without loss of generality we can assume that s3 = 0. 
Then, putting aii = a i (i = 1, 2, 3), we have from system (1.5) 

aq = 0 ( i ; e j ) ,  a3 = a2, ~2 = ~'3 = 0, B23 = BI3 = 0, B33 = B22 

Ci2 -- alBI2B2z, C23 -- Ci3 -- 0, C 3 3 - C 2 2  = alB~2, $3 = 0 (1.6) 

go = s2/(alBI2) ,  gl = -B22, g2 = BI2, g3 = 0 

It follows from the conditions aij = 0, a 3 = a 2 that the first coordinate axis, with respect to which the 
linear invariant relation (1.4) is specified, is orthogonal to the circular section of the gyration ellipsoid. 
The other equalities of (1.6) show that the vector of the gyrostatic moment is directed along the same 
axis, while the vector s, in general, does not belong to it. 

On the basis of conditions (1.6), relation (1.4) can be written as follows: 

xt = go -  B22Vl -I- Bi2V 2 (1.7) 
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Equations (1.1) and (1.2), with conditions (1.6) and (1.7), take the form 

3~2 = x3(0~o + ~ l V I  + 0~2V2) -- 0~3V3 -- O~I3V1V3 

.1~ 3 -- _ x 2 ( ~  0 + [~lVl + ~2V2) + 0~3V 2 + O~13V1V 2 

4 1 = a 2 ( X 3 V 2 - X 2 V 3 )  (1.8) 

4 2 = - a2x3V 1 + a l g 0 v 3  - a l B 2 2 v 1 v  3 -I- a l B l 2 V 2 V  3 

2 
4 3 = a2X2V 1 -- a l g 0 V  2 + a l B 2 2 v I V  3 -  a l B l 2 V 2  

where 

O~ 0 = g o ( a l - a 2 ) - a 2 J ~ . l ,  o~ l = a 2 B l l - ( a l - a 2 ) B 2 2  

2 2 
O~ 2 -~ a i B l 2 ,  O~ 3 = S l + a 2 2 g o B 2 2 ,  txl3 -- C 2 2 - C l l  + a l B 1 2 - a l B 2 2  

We will take relations (1.6) and (1.7) into account in the integrals (1.3). We obtain 

2 2 2 2 2 2 
a2(x2+x3)--20~3Vl--O~13Vl = 2E 1, Vl +V2+V 3 = 1 

2 B22)V~/2 kl X2V2 + X3V3 + (go  + ~'I)VI -- ( n i l  + -- 

(1.9) 

Here 

2 
E I = E - ( a l g  0 + C 3 3 ) / 2 ,  k 1 = k+B22/2 

( g  I and k 1 are new arbitrary constants). 
Equations (1.8) have three first integrals (1.9), and hence their integration reduces to the integration 

of a second-order system. We will find the integrating factor of this system using Jacobi's integrating 
factor theory [15]. This approach is usually employed when we know the additional first integral of system 
(1.1), (1.2), since the Jacobi integrating factor in it is equal to unity. The following condition holds for 
system (1.8) 

5 ~)Yi 

i = l  

where 

Yl = x2, Y2 = x3, Y3 = Vl, Y4 = v2, Y5 = v3 

and Y/are the right-hand sides of system (1.8). Hence, the Jacobi integrating factor is a function of the 
variablesyi (i = 1, 2, . . . ,  5). In view of that the use of the general theory [15] is considerably, and hence 
in this paper we will integrate system (1.8) by finding the integrating factor of the second-order reduced 
system. 

From the first and third relations of system (1.9) we have 

a2v2 tP (v  1) + v 3 ~  a2v3~o(v1)  - v2 A , ~ - ~ I  ) 
= , x 3  = ( 1 . 1 0 )  

x2 a2(1 -v~ )  a2(1 -v~)  

where 

- + B22)Vl/2 (p(Vl) = kl ( g o + ~ l ) V l + ( B l l  2 

3 4 
A(Vl) = d o + d l v  I +d2v~+d3v 1 +d4v 1 

(1.11) 
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d o = a 2 ( 2 E l - a 2 k l )  , d 1 = 2a2[o~3+a2(go+~, l )k l ]  

d 2 = a2[0~13 - 2 E  l - a z ( g  0 + ~,1) 2 - a 2 k l ( B l l  + B22)] 

d3 = az[az(go + ~,I)(BI1 + B22) _ 2~3]  (1.12) 

d 4 = -a2[0~13 + az (Bl l  + B22)2/4] 

We introduce expressions (1.7) and (1.10) into the last three equations of system (1.8). We obtain 

~ t l -  ~ ,  V2 = V I V 2 ~ + V 3 1 ~ / ( V I )  ~/3 V I v 3 J A ( v I ) - V 2 ~ / ( V 1 )  
2 ' 2 (1.13) 

1 - v  I 1 - v  1 

Here 

II/(Vl) = a l B i 2 v z ( 1 - v ~ ) + P ( V l ) ,  

Po = algo, Pl = -a zk l -a lB22 ,  

P3 = [2alB22 - a z ( B l l  + B22)]/2 

2 3 
P(vl)  = po+PlVl  +P2V1 +P3V1 

P2 = a2~l + g o ( a 2 - a l )  (1.14) 

Hence, the integration of Eqs (1.1) and (1.2) over invariant relation (1.4) reduces to integrating the 
third-order system (1.13). 

2. I N T E G R A T I O N  OF S Y S T E M  (1 .13)  

We will introduce the variables q0 and 0 instead of the variables Vl, v2 and v3. By virtue of the geometrical 
integral v 2 + v 2 + v 2 = 1 we can write 

v I = cos0, v 2 = sin0cosg, v3 = sinesin9 (2.1) 

We substitute expressions (2.1) into system (1.3). We obtain 

dOIdt = 4~(  cos 0)/sin 0 (2.2) 

4~-(cos0)sin0&p + [aiBl2sin30coscp + P(cos0) ]d0  = 0 (2.3) 

Equation (2.2) defines the relation 0(t). In general, it follows from this that vl = cos0 is an elliptic 
function of time. To determine the function q0(0) from Eq. (2.3) we specify the integrating factor of this 
equation in the form 

M(cp, 0) = [ ~ N U p ,  0)] -I, N(~p, 0) = ~pl(0)sing)+cp2(0)cos~P+93(0 ) (2.4) 

where q0i(0) (i = 1, 2, 3) are functions to be determined. 
If the integrating factor (2.4) is found, Eq. (2.3) can be written in the form 

OV( 9, 0)&p + OV(~p, 0)d0 = 0 (2.5) 
b~o b0 

Here, by virtue of relations (2.3) and (2.4), we have put 

0V(tp, 0) _ sin0 0V(9, 0) alBlzsin30cosq0 + P(cos0)  
= (2.6) 

~)~p N(~p, 0) '  20 4~-(cos 0)N(q0, 0) 
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Bearing these equations in mind, we can write the equality 

O2V(~0, 0)  -- O2V(~0, 0)  

aoo~o &o~o 

We have 

~/A(cosO)(~o~(O)sinO- (P3(O)cosO) = a lg l2~Ol(O)s in30 

4~-(cos0)(~o~(0)sin0- tP2(0)cos0) = q ) l ( 0 ) P ( c o s 0 )  

4~-(c0s0)(9' j (0)s in0-  91(0)cos0) = alBi2~o3(0)sin30 - ~02(0)P(cos0 ) 
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(2.7) 

(2.8) 

(2.9) 

(2.10) 

where x0 is an arbitrary constant. The solution of Eq. (2.8) will be found in the class of polynomials in 
cos 0. It can be shown that, when P2 = 0, it allows of the solution 

~2(0 )  = - (P l  + 2P3) - P0 c~ + P3 cOs20 (2.11) 

Hence, by virtue of the notation (1.14) we obtain, in addition to conditions (1.6), the constraint of the 
parameters of problem (1.1), (1.2) 

k l  = g o ( a l - a 2 ) l a 2  (2.12) 

We introduce the expressions q~l(0) = ~A(cos 0), (2.10) and (2.11) into Eq. (2.9) and require that 
the equality obtained should be an identity in 0. Then, in view of the expression for A(Vl) we obtain 
from relations (1.11) 

d I + 2xoaiBt2 + 2P0(p I + 2p3 ) = 0 

2 2 2 
d o + d 2 - a i B i 2 + P o + p l ( p l  +2P3) = 0 

d I + 3d 3-4a~Bl2x o -  2P0P3 + 2PoPl = 0 
(2.13) 

2 2 2 
d4 + aiBi2 + P3 = O, d 3 -  2a iBi2xo-  2Pop3 = 0 

It can be shown on the basis of the notation (1.12), (1.14) and condition (2.12) that the system of 
equations (2.13) is dependent and can be reduced to only two equations 

2 2 
a 2 ( C 3 3 - C i i  ) = a l ( a l B 2 2 - a 2 B i i ) B 2 2 + a l B i 2  (2.14) 

x 0 = [ a l g o ( a E B l l - a l B 2 2 ) - a 2 s l ] / ( a l B i 2 )  (2.15) 

Hence, if the parameters of problem (1.1), (1.2) satisfy conditions (2.12) and (2.14), the differential 
equation (2.3) allows of the integrating factor (2.4), where qo1(0) = ~/A(cos0), 92(0) and 92(0) are 
expressed by formulae (2.10) and (2.11), while the parameter x0 is defined by relations (2.15). The 
constants E 1 and kl, occurring in the expression for di from (1.12), remain arbitrary. 

We return to system of equations (2.6). From the first equation of this system, in general, one can 
obtain three versions of the result of the integration. They depend on the values of the quantity 

= + 2"3) 2 + d0- 0 

%(0) = O(cos0)sin0, O(cos0) = xo-a lB i2cosO 

To find the solution of system (2.7)-(2.9), by analogy with [2, 3] we put ~01(0 ) = q'~COS 0). Equation 
(2.7) can then be simply integrated 
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Here we assume that the inequality go > 0 is satisfied, which can be achieved by the choice of the arbitrary 
constants E1 and k 1. Then, by virtue of relations (1.11) and (1.12), it follows from Eq. (2.2) that values 
of the variable 0 exist for which the quantity A(cos 0) is not negative, i.e. 0(t) is a real function of time. 
When go > 0 we have 

V((p, O) = l---mlnlH+(~' 0)1 + F(O) (2.16) 

where 

H_+(gl, O) = h(O) -+ ,fgotgCP-~ (0), h(O) = cll(cosO) + J g o  + cP2(c~ 

a(0)  = arccos 
%(cos0) 

s i n 0 J g  0 + q~2(cos0) 

while F(0) is a function which is found by substituting expression (2.16) into the second equation of 
system (2.6) 

f - a l B l 2 [ ( P l  + 2 p j  + p o v l - p 3 V ~ l d v  1 F(0) : s(v,(o)): (2.17) 

Hence ,  re la t ion (2.5) takes the form dV(% 0) = 0, i.e. Eq. (2.3) allows o f  the  first in tegral  V(% 0) = C 
when  condi t ions  (2.12), (2.14) and  (2.15) a re  satisfied, whe re  C is an a rb i t r a ry  constant .  By vi r tue  o f  
equal i t ies  (2.16) and  (2.17) we can reduce  it to the  fo rm 

h(O) 1 q0(0) = a ( 0 )  + 2arctg[-~00 t h - - - ~ - - ( C - f ( c o s 0 ) )  (2.18) 

Consequently, in the solution constructed vl = cos0(t) is an elliptic function of time, while the relation 
q0 = q0(0) is given by Eq. (2.18). After substituting these functions into Eqs (1.7), (1.10) and (2.1), we 
obtain the dependence of all the variables of problem (1.1), (1.2) on the time t. The solution obtained 
depends on four arbitrary constants E, k, C and to. 

In conclusion, we note that Chaplygin [2] constructed a solution of Eqs (2.2) and (2.3) for the 
conditions go = 0, %1 = 0 and Sl = 0, while Kharlamov [3] constructed a solution for the conditions 
go = 0 and ~1 = 0. 
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